Skip to content

pysmo.tools.signal #

This module provides functions commonly used in signal processing.

Functions:

  • delay

    Cross correlates two seismograms to determine signal delay.

  • envelope

    Calculates the envelope of a gaussian filtered seismogram.

  • gauss

    Returns a gaussian filtered seismogram.

delay #

delay(seismogram1: Seismogram, seismogram2: Seismogram, max_delay: timedelta | None = None, allow_negative: bool = False) -> tuple[timedelta, float]

Cross correlates two seismograms to determine signal delay.

This functions is a wrapper around the scipy.signal.correlate() function. The default behavior is to call the correlate function with mode="full" using the input seismograms directly. This is the most robust option, but also the slowest.

When max_delay is set to a value, the search space is limited to +/- the equivalent number of samples for value. This is useful for finding the exact delay when an approximate delay time is known, and the input seismograms are windowed accordingly. This mode requires the seismograms to be of equal length.

Implications of setting the max_delay parameter are the following:

  • If the true delay (i.e. the amount of time the seismograms should be shifted by) lies within the max_delay range, and also produces the highest correlation, the delay time returned is identical for both methods.
  • If the true delay lies outside the max_delay range and produces the highest correlation, the delay time returned will be incorrect when max_delay is set.
  • In the event that the true delay lies within the max_delay range but the maximum signal correlation occurs outside, it will be correctly retrieved when the max_delay parameter is set, while not setting it yields an incorrect result.
Warning

This function does not take into account the begin_time attribute of the input seismograms. Thus, using the output of this function directly aligns the data of the seismograms, but not the seismograms themselves. If that is desired, the difference between begin_time attribute of two seismograms needs be added to the delay calculated here.

Parameters:

  • seismogram1 (Seismogram) –

    First seismogram to cross correlate.

  • seismogram2 (Seismogram) –

    Second seismogram to cross correlate.

  • max_delay (timedelta | None, default: None ) –

    Maximum length of the delay (positive or negative).

  • allow_negative (bool, default: False ) –

    Return the delay corresponding to the minium cross correlation value if its absolue value is larger than the maximum positive value.

Returns:

  • delay ( timedelta ) –

    Time delay of the second seismogram with respect to the first.

  • ccnorm ( float ) –

    Normalised cross correlation value of the overlapping seismograms after shifting. Always between -1 and 1.

Examples:

>>> from pysmo import MiniSeismogram
>>> from pysmo.classes import SAC
>>> from pysmo.functions import detrend
>>> from pysmo.tools.signal import delay
>>> from datetime import timedelta
>>> import numpy as np
>>> my_sac = SAC.from_file('testfile.sac')
>>> seis1 = detrend(my_sac.seismogram)
>>> # create a second seismogram from the first with
>>> # a different begin_time and a shift in the data.
>>> seis2 = MiniSeismogram.clone(seis1, skip_data=True)
>>> nroll = 1234
>>> seis2.data = np.roll(seis1.data, nroll)
>>> begin_time_delay = timedelta(seconds=100)
>>> seis2.begin_time += begin_time_delay
>>> signal_delay = nroll * seis1.delta
>>> expected_delay = begin_time_delay + signal_delay
>>> calculated_delay = delay(seis1, seis2, max_delay=signal_delay+timedelta(seconds=1)
>>> expected_delay - calculated_delay
datetime.timedelta(0)
Source code in pysmo/tools/signal.py
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
def delay(
    seismogram1: Seismogram,
    seismogram2: Seismogram,
    max_delay: timedelta | None = None,
    allow_negative: bool = False,
) -> tuple[timedelta, float]:
    """
    Cross correlates two seismograms to determine signal delay.

    This functions is a wrapper around the
    [`#!py scipy.signal.correlate()`][scipy.signal.correlate] function.
    The default behavior is to call the correlate function with
    `#!py mode="full"` using the input seismograms directly. This is the most
    robust option, but also the slowest.

    When `max_delay` is set to a value, the search space is limited to
    +/- the equivalent number of samples for value. This is useful for finding
    the exact delay when an approximate delay time is known, and the input
    seismograms are windowed accordingly. This mode requires the seismograms to
    be of equal length.

    Implications of setting the `max_delay` parameter are the following:

    - If the true delay (i.e. the amount of time the seismograms _should_ be
      shifted by) lies within the `max_delay` range, and also produces the
      highest correlation, the delay time returned is identical for both
      methods.
    - If the true delay lies outside the `max_delay` range and produces the
      highest correlation, the delay time returned will be incorrect when
      `max_delay` is set.
    - In the event that the true delay lies within the `max_delay` range but
      the maximum signal correlation occurs outside, it will be correctly
      retrieved when the `max_delay` parameter is set, while not setting it
      yields an incorrect result.

    Warning:
        This function does not take into account the `begin_time` attribute of
        the input seismograms. Thus, using the output of this function directly
        aligns the data of the seismograms, but not the seismograms themselves.
        If that is desired, the difference between `begin_time` attribute of
        two seismograms needs be added to the delay calculated here.

    Parameters:
        seismogram1: First seismogram to cross correlate.
        seismogram2: Second seismogram to cross correlate.
        max_delay: Maximum length of the delay (positive or negative).
        allow_negative: Return the delay corresponding to the minium
            cross correlation value if its absolue value is larger than
            the maximum positive value.

    Returns:
        delay: Time delay of the second seismogram with respect to the first.
        ccnorm: Normalised cross correlation value of the overlapping
            seismograms *after* shifting. Always between -1 and 1.

    Examples:
        >>> from pysmo import MiniSeismogram
        >>> from pysmo.classes import SAC
        >>> from pysmo.functions import detrend
        >>> from pysmo.tools.signal import delay
        >>> from datetime import timedelta
        >>> import numpy as np
        >>> my_sac = SAC.from_file('testfile.sac')
        >>> seis1 = detrend(my_sac.seismogram)
        >>> # create a second seismogram from the first with
        >>> # a different begin_time and a shift in the data.
        >>> seis2 = MiniSeismogram.clone(seis1, skip_data=True)
        >>> nroll = 1234
        >>> seis2.data = np.roll(seis1.data, nroll)
        >>> begin_time_delay = timedelta(seconds=100)
        >>> seis2.begin_time += begin_time_delay
        >>> signal_delay = nroll * seis1.delta
        >>> expected_delay = begin_time_delay + signal_delay
        >>> calculated_delay = delay(seis1, seis2, max_delay=signal_delay+timedelta(seconds=1)
        >>> expected_delay - calculated_delay
        datetime.timedelta(0)
    """
    if seismogram1.delta != seismogram2.delta:
        raise ValueError("Input seismograms must have the same sampling rate.")

    in1, in2 = seismogram1.data, seismogram2.data
    delta = seismogram1.delta
    mode = "full"

    if max_delay is not None:
        if len(in1) != len(in2):
            raise ValueError(
                "Input seismograms must be of equal length when using `max_delay`."
            )
        mode = "valid"
        max_lag_in_samples = ceil(max_delay / delta)
        zeros_to_add = np.zeros(max_lag_in_samples)
        in1 = np.append(zeros_to_add, in1)
        in1 = np.append(in1, zeros_to_add)

    corr = _correlate(in1, in2, mode=mode)  # type: ignore
    corr_index = np.argmax(corr)

    if allow_negative and np.max(corr) < -1 * np.min(corr):
        corr_index = np.argmin(corr)

    if max_delay is not None:
        shift = -int(corr_index - max_lag_in_samples)
    else:
        shift = int(len(in2) - 1 - corr_index)

    delay = shift * delta

    # find overlapping parts of seismograms after allignment
    if shift < 0:
        in1 = in1[-shift:]
    else:
        in2 = in2[shift:]
    if len(in1) > len(in2):
        in1 = in1[: len(in2)]
    else:
        in2 = in2[: len(in1)]

    covr, _ = _pearsonr(in1, in2)

    return delay, float(covr)

envelope #

envelope(seismogram: T, Tn: float, alpha: float) -> T

Calculates the envelope of a gaussian filtered seismogram.

Parameters:

  • seismogram (T) –

    Name of the seismogram object passed to this function.

  • Tn (float) –

    Center period of Gaussian filter [in seconds]

  • alpha (float) –

    Set alpha (which determines filterwidth)

Returns:

  • T

    Seismogram containing the envelope

Examples:

>>> from pysmo.classes import SAC
>>> from pysmo.tools.signal import envelope
>>> seis = SAC.from_file('sacfile.sac').seismogram
>>> Tn = 50 # Center Gaussian filter at 50s period
>>> alpha = 50 # Set alpha (which determines filterwidth) to 50
>>> envelope_seis = envelope(seis, Tn, alpha)
Source code in pysmo/tools/signal.py
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
def envelope[T: Seismogram](seismogram: T, Tn: float, alpha: float) -> T:
    """
    Calculates the envelope of a gaussian filtered seismogram.

    Parameters:
        seismogram: Name of the seismogram object passed to this function.
        Tn: Center period of Gaussian filter [in seconds]
        alpha: Set alpha (which determines filterwidth)

    Returns:
        Seismogram containing the envelope

    Examples:
        >>> from pysmo.classes import SAC
        >>> from pysmo.tools.signal import envelope
        >>> seis = SAC.from_file('sacfile.sac').seismogram
        >>> Tn = 50 # Center Gaussian filter at 50s period
        >>> alpha = 50 # Set alpha (which determines filterwidth) to 50
        >>> envelope_seis = envelope(seis, Tn, alpha)
    """
    clone = deepcopy(seismogram)
    clone.data = _gauss(seismogram, Tn, alpha)[0]
    return clone

gauss #

gauss(seismogram: T, Tn: float, alpha: float) -> T

Returns a gaussian filtered seismogram.

Parameters:

  • seismogram (T) –

    Name of the SAC object passed to this function.

  • Tn (float) –

    Center period of Gaussian filter [in seconds]

  • alpha (float) –

    Set alpha (which determines filterwidth)

Returns:

  • T

    Gaussian filtered seismogram.

Examples:

>>> from pysmo.classes import SAC
>>> from pysmo.tools.signal import gauss
>>> seis = SAC.from_file('sacfile.sac').seismogram
>>> Tn = 50 # Center Gaussian filter at 50s period
>>> alpha = 50 # Set alpha (which determines filterwidth) to 50
>>> gauss_seis = gauss(seis, Tn, alpha)
Source code in pysmo/tools/signal.py
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
def gauss[T: Seismogram](seismogram: T, Tn: float, alpha: float) -> T:
    """
    Returns a gaussian filtered seismogram.

    Parameters:
        seismogram: Name of the SAC object passed to this function.
        Tn: Center period of Gaussian filter [in seconds]
        alpha: Set alpha (which determines filterwidth)

    Returns:
        Gaussian filtered seismogram.

    Examples:
        >>> from pysmo.classes import SAC
        >>> from pysmo.tools.signal import gauss
        >>> seis = SAC.from_file('sacfile.sac').seismogram
        >>> Tn = 50 # Center Gaussian filter at 50s period
        >>> alpha = 50 # Set alpha (which determines filterwidth) to 50
        >>> gauss_seis = gauss(seis, Tn, alpha)
    """
    clone = deepcopy(seismogram)
    clone.data = _gauss(seismogram, Tn, alpha)[1]
    return clone