pysmo.tools.noise
#
Generate realistic synthetic noise.
This module provides support for calculating random synthetic noise that matches the naturally observed amplitude spectrum.
Further Reading
Peterson, J., 1993. Observations and modelling of background seismic noise. Open-file report 93-322, U. S. Geological Survey, Albuquerque, New Mexico.
Examples:
Given the spectral amplitude in observed seismic noise on Earth is not flat (i.e. white noise), it makes sense to calculate more realistic noise for things like resolution tests with synthetic data.
In this example, random noise seismograms are generated from three different noise models. These are Peterson's NLNM, NHNM, and an interpolated model that lies between the two.
Example source code
#!/usr/bin/env python
# Example script for pysmo.tools.noise
import numpy as np
import matplotlib.pyplot as plt
from scipy import signal
from pysmo.tools.noise import generate_noise, peterson
from datetime import timedelta
npts = 200000
delta = timedelta(seconds=0.1)
sampling_frequency = 1 / delta.total_seconds()
nperseg = npts / 4
nfft = npts / 2
time_in_seconds = np.linspace(0, npts * delta.total_seconds(), npts)
def calc_power(data, sampling_frequency):
"""Calculuate power and drop first element (f=0Hz) to avoid dividing by 0"""
freqs, psd = signal.welch(
data, sampling_frequency, nperseg=nperseg, nfft=nfft, scaling="density"
)
return freqs[1:], psd[1:]
# Calculate noise models
low_noise_model = peterson(noise_level=0)
mid_noise_model = peterson(noise_level=0.5)
high_noise_model = peterson(noise_level=1)
# Generate random noise seismograms
low_noise_seismogram = generate_noise(npts=npts, model=low_noise_model, delta=delta)
mid_noise_seismogram = generate_noise(npts=npts, model=mid_noise_model, delta=delta)
high_noise_seismogram = generate_noise(npts=npts, model=high_noise_model, delta=delta)
# Calculuate power spectral density
f_low, Pxx_dens_low = calc_power(low_noise_seismogram.data, sampling_frequency)
f_mid, Pxx_dens_mid = calc_power(mid_noise_seismogram.data, sampling_frequency)
f_high, Pxx_dens_high = calc_power(high_noise_seismogram.data, sampling_frequency)
fig = plt.figure(figsize=(20, 10))
# Plot random high and low noise
plt.subplot(321)
plt.plot(time_in_seconds, high_noise_seismogram.data, "r", linewidth=0.2)
plt.ylabel("Ground Accelaration")
plt.subplot(323)
plt.plot(time_in_seconds, mid_noise_seismogram.data, "g", linewidth=0.2)
plt.ylabel("Ground Accelaration")
plt.subplot(325)
plt.plot(time_in_seconds, low_noise_seismogram.data, "b", linewidth=0.2)
plt.ylabel("Ground Accelaration")
plt.xlabel("Time [s]")
# Plot PSD of noise
plt.subplot(122)
plt.plot(
1 / f_high,
10 * np.log10(Pxx_dens_high),
"r",
linewidth=0.5,
label="generated high noise",
)
plt.plot(
1 / f_mid,
10 * np.log10(Pxx_dens_mid),
"g",
linewidth=0.5,
label="generated medium noise",
)
plt.plot(
1 / f_low,
10 * np.log10(Pxx_dens_low),
"b",
linewidth=0.5,
label="generated low noise",
)
plt.plot(
high_noise_model.T,
high_noise_model.psd,
"k",
linewidth=1,
linestyle="dotted",
label="NHNM",
)
plt.plot(
mid_noise_model.T,
mid_noise_model.psd,
"k",
linewidth=1,
linestyle="dashdot",
label="Interpolated noise model",
)
plt.plot(
low_noise_model.T,
low_noise_model.psd,
"k",
linewidth=1,
linestyle="dashed",
label="NLNM",
)
plt.gca().set_xscale("log")
plt.xlabel("Period [s]")
plt.ylabel("Power Spectral Density (dB/Hz)")
plt.legend()
plt.savefig("peterson.png")
plt.show()
Classes:
-
NoiseModel
–Class to store seismic noise models.
Functions:
-
generate_noise
–Generate a random seismogram from a noise model. Realistic seismic noise is
-
peterson
–Generate a noise model by interpolating between Peterson's
NoiseModel
dataclass
#
Class to store seismic noise models.
Attributes:
Source code in pysmo/tools/noise.py
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
|
generate_noise
#
generate_noise(model: NoiseModel, npts: int, delta: timedelta = delta.value, begin_time: datetime = begin_time.value, return_velocity: bool = False, seed: int | None = None) -> MiniSeismogram
Generate a random seismogram from a noise model. Realistic seismic noise is generated by assigning random phases to a fixed amplitude spectrum prescribed by a noise model.
Parameters:
-
model
(NoiseModel
) –Noise model used to compute seismic noise.
-
npts
(int
) –Number of points of generated noise
-
delta
(timedelta
, default:delta.value
) –Sampling interval of generated noise
-
begin_time
(datetime
, default:begin_time.value
) –Seismogram begin time
-
return_velocity
(bool
, default:False
) –Return velocity instead of acceleration.
-
seed
(int | None
, default:None
) –set random seed manually (usually for testing purposes).
Returns:
-
MiniSeismogram
–Seismogram with random seismic noise as data.
Source code in pysmo/tools/noise.py
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
|
peterson
#
peterson(noise_level: float) -> NoiseModel
Generate a noise model by interpolating between Peterson's New Low Noise Model (NLNM) and New High Noice Model (NHNM).
Parameters:
-
noise_level
(float
) –Determines the noise level of the generated noise model. A noise level of 0 returns the NLNM, 1 returns the NHNM, and anything > 0 and < 1 returns an interpolated model that lies between the NLNM and NHNM.
Returns:
-
NoiseModel
–Noise model.
Source code in pysmo/tools/noise.py
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
|